Identification of the human and rat P450 enzymes responsible for the sulfoxidation of S-methyl N,N-diethylthiolcarbamate (DETC-ME). The terminal step in the bioactivation of disulfiram.
نویسندگان
چکیده
The present study investigated the role of rat and human cytochrome P450 enzymes in the sulfoxidation of S-methyl N,N-diethylthiolcarbamate (DETC-Me) to S-methyl N,N-diathylthiolcarbamate sulfoxide (DETC-Me sulfoxide), the putative active metabolite of disulfiram. DETC-Me sulfoxidation by microsomes from male and female rats treated with various cytochrome P450-enzyme inducers suggested that multiple enzymes can catalyze this reaction, and these include, CYP1A1/2, CYP2B1/2, and CYP3A1/2. All cDNA-expressed human cytochrome P450 enzymes examined catalyzed the sulfoxidation of DETC-Me. The turnover rates (min-1) of DETC-Me sulfoxidation by the cDNA-expressed cytochrome P450 enzymes ranked as follows: CYP3A4 > CYP2A6 = CYP2C9 > CYP1A2 > CYP2B6 = CYP2E1 > CYP1A1 > CYP2D6. Interestingly, CYP3A4 ranked first or last, depending on whether or not additional NADPH-cytochrome P450 reductase was coexpressed in the lymphoblastoid cells. This complicated estimates of the contribution of CYP3A4 to DETC-Me sulfoxidation by human liver microsomes. The sample-to-sample variation in DETC-Me sulfoxidation by bank of human liver microsomes (N=13) correlated highly with coumarin 7-hydroxylation (r=0.88) and testosterone 6beta-hydroxylation (r=0.90), suggesting that CYP2A6 and CYP3A4/5 contribute to the sulfoxidation of DETC-Me by human liver microsomes. Although, chlorzoxazone 6-hydroxylation (a marker for CYP2E1) correlated poorly with DETC-Me sulfoxidation, the correlation improved from r=0.07 to r=0.44 when DETC-Me sulfoxidation was studied in the presence of the CYP2A6 inhibitor, coumarin. Similarly, when DETC-Me sulfoxidation was studied in the presence of diethyldithiocarbamate (DDTC), the inhibited DETC-Me sulfoxidase activity correlated better (r=0.50) with chlorzoxazone 6-hydroxylase, compared with DETC-Me sulfoxidase activity in the absence of DDTC (r=0.09). Polyclonal antibodies against CYP2E1 caused a modest inhibition (30%) of DETC-Me sulfoxidation by human liver microsomes. Anti-CYP3A1 antibodies completely inhibited DETC-Me sulfoxidation by cDNA-expressed CYP3A4. Under similar conditions, DETC-Me sulfoxidation by human liver microsomes was only partially inhibited by anti-CYP3A1 antibodies. Although studies with the rat and cDNA-expressed cytochrome P450 enzymes suggested that CYP1A2 contributed to DETC-Me sulfoxidation, this reaction was not inhibited by either furafylline ( a mechanism-based inhibitor of CYP1A2) or antibodies against CYP1A1/2. A significant role for CYP2C9 was excluded by the inability of sulfaphenazole to inhibit the sulfoxidation of DETC-Me by human liver microsomes. Collectively, these data suggest that multiple cytochrome P450 enzymes can catalyze the sulfoxidation of DETC-Me. In human liver microsomes the CYP2A6, CYP2E1, and CYP3A4/5 all contribute significantly to the sulfoxidation of DETC-Me. It is interesting to note that DDTC, the reduced metabolite of disulfiram, is known to inhibit these same enzymes. The ability of DDTC to block the formation of DETC-Me sulfoxide may explain why the dose of disulfiram required to produce a disulfiram-ethanol reaction in alcoholics is so variable and often inadequate.
منابع مشابه
Carbamoylation of brain glutamate receptors by a disulfiram metabolite.
S-Methyl-N,N-diethylthiolcarbamate sulfoxide (DETC-MeSO), a metabolite of the drug disulfiram, is a selective carbamoylating agent for sulfhydryl groups. Treatment of glutamate receptors isolated from mouse brain with DETC-MeSO blocks glutamate binding. In vivo, carbamoylated glutathione, administered directly to mice or formed by reaction of DETC-MeSO with glutathione in the blood, also blocks...
متن کاملاکسیدازها و مقاومت به حشره کش های پیرترویید در حشرات مهم پزشکی
MFÔs are a large diverse superfamily of enzymes found in all insect tissues. They are involved in the metabolism of xenobiotics (e.g. drugs, pesticides and plant toxins) and endogenous compounds (e.g. ecdysteroids and juvenile hormones). They are also involved in bioactivation of phosphorothioate compounds such as organophosphorus insecticides. They have very diverse activities like hydroxyla...
متن کاملStudies on the metabolic activation of disulfiram in rat. Evidence for electrophilic S-oxygenated metabolites as inhibitors of aldehyde dehydrogenase and precursors of urinary N-acetylcysteine conjugates.
Recent studies on the mechanism by which disulfiram inhibits aldehyde dehydrogenase have provided evidence for the formation of reactive intermediates that are thought to carbamoylate, and thereby inactivate the enzyme. In our study, rats were dosed with either disulfiram (0.25 mmol kg-1 i.p.) or its reduced metabolite diethyldithiocarbamate (DDTC; 0.5 mmol kg-1 i.p.) and urine was collected fo...
متن کاملInteraction of disulfiram with antiretroviral medications: efavirenz increases while atazanavir decreases disulfiram effect on enzymes of alcohol metabolism.
BACKGROUND AND OBJECTIVES Alcohol abuse complicates treatment of HIV disease and is linked to poor outcomes. Alcohol pharmacotherapies, including disulfiram (DIS), are infrequently utilized in co-occurring HIV and alcohol use disorders possibly related to concerns about drug interactions between antiretroviral (ARV) medications and DIS. METHOD This pharmacokinetics study (n=40) examined the e...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 23 10 شماره
صفحات -
تاریخ انتشار 1995